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We fully characterize bipartite entanglement-annihilating (EA) channels that destroy entanglement of any
state shared by subsystems and, thus, should be avoided in any entanglement-enabled experiment. Our approach
relies on extending the problem to EA positive maps, the cone of which remains invariant under concatenation
with partially positive maps. Due to this invariancy, positive EA maps adopt a well characterization and their
intersection with completely positive trace-preserving maps results in the set of EA channels. In addition to
a general description, we also provide sufficient operational criteria revealing EA channels. They have a clear
physical meaning since the processes involved contain stages of classical information transfer for subsystems.
We demonstrate the applicability of derived criteria for local and global depolarizing noises, and specify
corresponding noise levels beyond which any initial state becomes disentangled after passing the channel.

The robustness of some entangled states is discussed.
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I. INTRODUCTION

Entanglement is a quantum phenomenon with numerous
potential quantum-information applications [1,2]. However,
the practical realization of such applications is typically faced
with various sources of noise, which affect the performance
and design of entanglement-enabled technologies. It is of
practical interest to understand how entanglement is influenced
by any such experimental imperfections. This problem has
stimulated considerable research effort, which has introduced
the concepts of entanglement sudden death and revival [3-5],
entanglement robustness [6-9], and entanglement-breaking
[10-15] and entanglement-annihilating [16] processes.

One of the main lessons of entanglement theory [1,2] is that
the presence of entanglement is in general extremely difficult
to verify. Therefore, some limitations are typically imposed
on both initial states and noise models in most of the studies
on the dynamics of entanglement [6-9,17-21]. No doubt
such analysis is in many cases of great practical relevance;
however, the conclusions do not necessarily capture the
universal behavior of entanglement. In fact, it is questionable
whether some universal entanglement dynamics features do
exist. For example, are there processes capable of creating
(not decreasing) entanglement regardless of the initial state?
Or, on the other hand, are there processes that destroy any
entanglement? Is there some equation capturing the dynamics
of entanglement?

The first of these questions resulted in considering var-
ious aspects of entangling and disentangling capabilities of
quantum processes [22,23]. The other two questions were
mostly studied for one-side noisy processes ® ® Id, where
the noise @ acts only on one of the subsystems while the
rest of subsystems evolve in a noiseless manner (Id). For such
processes, the so-called evolution equation for entanglement
has been derived [24-27]. It says that the change of the
entanglement due to one-sided noise is quantitatively bounded
by its action on the maximally entangled state. Then, all the
noises @ that disentangle the maximally entangled state will
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also disentangle a given subsystem (under the noise action)
from any other subsystem (noiseless) regardless of the initial
state of the global system, ipso facto forming a class of
entanglement-breaking (EB) processes [10-15].

In practice, however, the noise is rarely one sided. This
is the reason why the notion of entanglement-annihilating
(EA) processes was introduced in Ref. [16]. Formally, the
noise (not necessarily one sided or local) is EA if its action
disentangles all the subsystems forming the composite system.
EA processes acting on a composite system do not necessarily
disentangle the system from its surrounding, they only destroy
entanglement between subsystems accessible in experiment.
For instance, it could happen that the joint action of local
noises on individual subsystems constitutes an EA process
even if none of the local noises is EB [16,28].

Although EA processes impose fundamental limitations
on the performance of entanglement-enabled experiments,
they are not explored much. In this paper, we provide
explicit characterization of general bipartite EA channels and
derive sufficient criteria for their detection. We employ these
criteria to specify the maximal noise levels above which no
entanglement can be preserved.

II. PRELIMINARIES

The states of a quantum system associated with a d-
dimensional Hilbert space H, are identified with density
operators (positive and unit trace) and form a convex set
S(Hy4). Quantum processes are modeled as channels, i.e.,
completely positive trace-preserving (CPT) linear maps @ :
T (Hin) = 7 (How) on trace-class operators 7 (Hi,). We say
a state of the system S composed of subsystems 7,4, ...
is separable if o = Zj pjgff ® Q? ® ---, with {p;} being a
probability distribution. Otherwise it is called entangled. We
say a channel &% = ®“%#" is EA if ®5[p%] is separable (with
respect to partition <7 | %|%| - - - ) for all input states. ®° is EB
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FIG. 1. (Color online) (a) Quantum channel as an input-output
device. (b) Physical interpretation of the diagonal-sum representation.
(c) Structure of EB channels.

if (&% ® Id¥)[w®F] is separable with respect to partition S|E
for all states 5% of system S and an arbitrary environment E.

Quantum channel ® can be written in a (nonunique) sum
diagonal representation ®[o] =), AkQA;E, where Kraus op-

erators A satisfy the normalization ), A,TCAk = [, (identity
operator). Because of that, the channel ® can be seen as a
sum of conditional outputs of a measurement, in which the
outcomes k are occurring with probability p; = tI’[QA]T{Ak]
while the state is undergoing the conditional (post-selected)
transformation ¢ — pk_lAkQA,t [Figs. 1(a) and 1(b)].

Any linear map @ : T(HS) — T(H3,) can be described
by a so-called Choi matrix [29,30]

Q3 1= (% @ 1) [|WSS ) (Wi, (1)

where [W55) = (@%)"12 YL |i ® i’} is a maximally entan-
gled state shared by system S and its clone §', (i|j) =
(i'lj"y = 8;j. It is well known [29,30] that the map ®S is
completely positive (CP) if and only if Q55 > 0, ie., Q35 €
S(HS, ® H). The matrix in Eq. (1) defines the map:

out
OX]=dS e [ Q5 (15, ® XT) ], )

where XT = Zi,j(j|X|i)|i/)(j/| € 7(H3)and trg denotes the
partial trace operation.

A general positive linear map A that transforms positive
operators into positive ones gives rise to the Choi matrix
which can be nonpositive in general. We say an operator
£ e T(H” ® H?) is block-positive (denoted as Elfg W) if
(x ® yl£|x @ y) = Oforall |x) € HZ, |y) € H? . Then, {AS
is positive} < {35 is block-positive} [30].

A. EB channels

Suppose subsystem o7 is subjected to a quantum channel
®“ whose Kraus operators are rank-1 projectors, i.e., Ay o
lo) (Y| with |) € HZ and |gi) € HZ,. In this case, we
deal with a measure-and-prepare procedure, i.e., the channel
of Holevo form [10,14,15]. Such a channel ®< is EB
and disentangles ./ from all the rest of the subsystems
B,EC,...(=%) because it contains a stage of classical
information transfer [depicted by double line in Fig. 1(c)].
Surprisingly, the converse statement is also true, i.e., {® is
EB} < {there exists a diagonal sum representation of ® with
rank-1 Kraus operators}. Alternative characterization of EB
channels exploits the property of the Choi matrix: {®% is
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EB} & {Qf” € S(H;‘fgl ® H;7") is separable with respect to
partition 7|7’} [13-15].

As far as EB channels CD]‘EZ%% acting on a composite
system @/% are concerned, the Choi state Qggd % s to
be separable with respect to partition «@/%|</'% but can
still be entangled with respect to partitions &7 |AB.o7'%#’ and
Bl of'AB (for instance, if Qf@d %' is the Smolin state
of four qubits [31]). In this case, the channel disentangles
(o/ PB) from any other systems %, 7, . . ., but the entanglement
between o7 and & can be preserved. However, if the channel
®“% has a local structure dﬁf{ﬁ = <I>°f{ ® ®Z, then {dbif)’;‘ﬁ is

EB} & {be{ is EB and CIDZ‘% is EB}, which follows immediately
from the particular form of the maximally entangled state

APB\ AR / BB
(WIATE Y = () @ (WEF ).

B. EA channels

In contrast to EB channels, EA channels by definition act
on composite systems. For bipartite systems one can use
the Horodecki criterion [32] to formulate a necessary and
sufficient condition for the map to be EA.

Lemma 1. Suppose &% : ’T(Hff@) — T(H‘ff{@) is a
channel. Then {®“? is EA} < {(Id” @ A%) o ®9% is a
positive map for any positive map A% : T(H;f’ft) — T (Hﬁfﬁt)}.

Unfortunately, Lemma 1 is not quite operational, which
makes it difficult to apply. However, in the case of two qubits
(d(ft’“@ = 2), Lemma 1 turns out to be rather fruitful because
without loss of generality the positive map A can be chosen
to be either a transposition [33] or a reduction map [34]. This
fact was exploited in characterization of local two-qubit EA
channels in Ref. [28]. Particularly interesting in the case of
bipartite local channels ®%% with d“ = d” are those that
form ® ® @ describing the physical situations when both
parties experience the same noise. Following [16], if ® ® &
is EA, we will refer to a “generating” channel ® as a 2-locally

EA channel (2LEA).

C. Structure of linear bipartite maps

To investigate the structure of EA channels it turns out to be
instructive to introduce the concept of positive entanglement-
annihilating (PEA) linear maps. In particular, a map ®“% is
PEA if it is positive and ®“#[p] belongs to a cone of states
separable with respect to partition 7|4 for all o € S(H7%).
The set of PEA maps is convex and its intersection with CPT
maps gives exactly all EA channels, i.e., EA = PEA N CPT.

Consider an example of 2-locally unital qubit linear trace-
preserving maps, i.e., maps of the form Y ® Y with Y'[/] = I.
Up to a unitary preprocessing and postprocessing, the map Y
can be written [35] in the form Y[X] = % Z;=o Ajtr[o; X]o;,
where {A;} are real numbers, o9 = I, and {U,-};:1 is a
conventional set of Pauli operators (in an appropriate basis).
Due to the trace-preserving condition, 1y = 1. The remaining
three parameters {A j}§:, are scaling coefficients of Bloch
ball axes. The map Y is given by a point in the Cartesian
coordinate system (A1,A2,A3) and the following relations hold:
() {Y is positive} & {|A;]| < 1,j =1,2,3}; (i) {T is CP} &
{(Y®TY is CP} & 143 > |A; £ Ayf; (iii) {Y is EB} &
{(Y®T is EB} & {|A1] 4+ [A2] + 23] < 1} () {Y @ T is
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FIG. 2. (Color online) Venn diagram of linear bipartite maps
®“%_ Convex figures correspond to convex sets.

positive} < {Y? is CP} & | £ )\2 |A2 + A2| M{reT
is PEA} & {Y?is EB} & {A% + Ag +M <1 OD{Y®TY
is EA} < {Y is CP and Y? is EB}. Clearly (vi) = (ii) N (v).
Analogies [(ii)~(iii)] and [(iv)~(v)] stimulated us to extend
the concept of entanglement annihilation to positive maps.
Indeed, definitions of both the CP and EB maps require
extensions of the channel action, whereas the concepts of
positive and PEA maps do not require for their definition any
additional physical system. The structure of linear bipartite
maps is illustrated in Fig. 2.

III. CRITERIA

The appealing simplicity of item (v) above is not sudden
and holds due to a general property that the cone of PEA maps
is closed under a left composition by partially positive maps
Id” @ A (left PP invariant), which follows from Lemma
1. This fundamental property enables us to characterize PEA
maps.

Proposition 1. The map ®“% is PEA if and only if

tr[( A ® Q%/@/)Qg%%/%’] 2 0 (3)

for all block-positive %PL@ and 07% € S(H” @ H?).
Proof. Using the extension of Lemma 1 for positive
maps, we get {®7% is PEA} < {(Id” @ A%) o ®7% is a
positive map for any positive map A“?}, which is equivalent
to the block positivity of matrix Qﬁg%% =1d77? @

AP)[QF?¥?|. By the definition of block positivity,

tr{|(pd“3 ® st{’%’ﬂq),o{% ® Xd’@’|

x (10777 @ A7)[Qg P )
= tr{(1d” ® AT) (") (9]
®Ix”?) (x| P77} > 0,

where AT denotes the dual map tr[XA[Y]] = tr[AT[X]Y].
Since the dual of a positive map is also positive (see,
e.g., [36]), AT is a positive map and the operator (Id” ®
AP)[|97P) (p¥?|] is block positive (equals £55”). Tak-
ing into account arbitrariness of A,|¢),|x) and remember-
ing the convex structure of density operators, we obtain
formula (3). |

Proposition 1 says (in terms of Choi matrices) that
the cone of PEA maps is dual to the cone of operators

dl@@)gd “#' inducing [via formula (2)] maps of the
PIAX] = Y, t| X&), Fr >

form 0. Moreover, using
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tr = tryp o tryg, We obtain alternative forms of the con-
dition in Eq (3). In particular, ®“# is PEA if and only if
for all éBP the operator tr [ (Sm% ® [7'Z)QIPTH ]
is positive, i.e., belongs to Cone(S(H“#")), or equivalently,
if the operator (Xﬂwmf@%wud@) belongs to a cone
of ;§garable states (with respect to partition «7|%) for all
X7,

We already know that EA = PEA N CPT, therefore the
complete characterization of EA channels is as follows:

Corollary 1. The linear map ®““ is an EA channel if and
only if its Choi matrix Q“‘Z{%M%" satisfies (3), Qf@d@ >0,

and trd@g;zﬁ@ézﬂ%/ (dgfd%’) II,Q%Q%'
Proof. The three requirements guarantee that ® € PEA,
@ € CP, and @ is trace preserving, respectively. |

Although Proposition 1 provides the necessary and suffi-
cient condition for the map to be PEA, it is challenging to
apply it to a given map. The following proposition provides
a nontrivial sufficient condition which is quite useful as we
demonstrate later.

Proposition 2. If can be written as a convex sum
of operators {gld@ ® 0% and 0¥ ® ;gw /, where gp
is block positive with respect to corresponding cut and g is
positive, then the map <% is PEA.

Proof. Substituting géz;\szﬂ%”’ ® 0% for QY% “ in (3),
we obtain that trm/@/[g“BpW‘% lx 7?2 (x %] = 07 > 0and

trdgg[EBp .Q ® Q%] > 0; thus, Eq. (3) holds. By exchang-
B\A'B

ABAR
Q ]

ing @/ <> 2 it is clear that the operator 0 ® &pp also
satisfies the requirement (3). |

Define A% = |p?) (%, then (™" ® 19%)(p”| =
(I79% @ ABYBZP1Y P (199% @ APT) for a suitable

o AR\ A B

Consequently, the map corresponding to

b ® I(p‘@)(tp@| is a concatenation of a positive map

¢Bp

A“? (given by Choi matrix E55°'“*?") followed by an EB
operation OEB[o] A o At acting on subsystem 8. Similarly,
describes a positive map on 7% followed by
some EB operation applied to subsystem .o7. As a result, the
subset of PEA maps characterized by Proposition 2 can be
understood as mixture of concatenations of positive maps with
EB operations applied on one of the subsystems (see also

Fig. 3):

077 Y (047 10N D)o AFE.

POVM

system

FIG. 3. (Color online) PEA maps and physical meaning of
Proposition 2 (positive maps {A;} are followed by one-sided EB
operations).
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Moreover, if we replace in Proposition 2 the block-positive
operators {BP SNL% and {j‘dﬁ A% and

by positive ones o
0%7? | respectively, then the corresponding Choi matrix will
automatically be positive and the associated map will be a fair
CP map.
Corollary 2. 1If trdggﬂgggd@/ =
Qe #A%

(d7d?)'[% and

is a convex sum of density operators o1 #<%
and o?!¥ /% (separable with respect to partitions .o | .o/ B’
and Ao/ of'B', respectively), then ®“* is an EA channel.

Let us note that such states Qf@d “# belong to a family
of so-called biseparable states (convex hull of states separable
with respect to some bipartite cut). Unfortunately, only a little
is known about biseparability detection [37-40]; however,
Corollary 2 encourages its deeper investigation (see, e.g., a
recent approach in Ref. [41]).

IV. CASE STUDY: DEPOLARIZING CHANNELS
Given a quantum channel ®“%_one can settle the question
of its being EA in the affirmative by finding either the
resolution (4) or the resolution of Corollary 2. Once the
resolution is found, it guarantees that ®“% isa PEA map, and,
consequently, the channel is EA. As an example we examine
a family of depolarizing channels which can act either locally
or globally on the system reflecting the physical situation of
individual or common baths, respectively.

The depolarizing channel on a d-dimensional system
is defined through ®, = gId + (1 — ¢)Tr, where Tr[X] =
tr[X]%Id is the trace map and g € [—(ﬁ,l]. Note that @,
is EB if and only if —- < ¢ < ﬁ (see Appendix B). A
bipartite system .2/ can be affected by a local depolarizing
noise of the form d>f;f ® qu%z , or a global depolarizing noise
of the form ®“%,

First, we illustrate the efficiency of the derived criteria by
examples of 2 x 2 and 3 x 2 systems for which the exact
solutions can be readily found thanks to the Peres-Horodecki
criterion [32,33]: in the case d< = d¥ = 2, CDf ® Cfo isEA
if g1g> < % and beﬂ is EA if ¢ < % in the case d¥ =3
and d¥ =2, & ® ®7 is EA if ¢1(9¢, — 1) < 2 and &;7%
isEAifg < %. The resolution (4) holds true for all the above
two-qubit EA channels, i.e., Proposition 2 reproduces the exact
results (see Fig. 4(a) and Appendices D and F). As far as
Corollary 2 is concerned, our analysis shows that it allows us
to detect the EA property of a smaller set of maps CD” ® CD@
[see Appendix E and Fig. 4(a)]. Analyzing channels actmg on
qutrit-qubit systems, we succeeded in constructing resolution
(4) for a subset of EA channels which is slightly smaller than
the whole set of EA channels [see Appendix D and Fig. 4(b)
for local channels and Appendix F for global ones]. In what
follows, we consider bipartite systems .%Z% with d” = d% =
d, where d is arbitrary.

For a local channel de ® ®Z it is possible to find

resolution (4) explicitly (see Appenqcilx D) if

(d—-2)d+1)

112 (g1 + g2). &)

@ —Dqigp <1+

Hence, for these values of parameters ¢g; and g, the channel
is EA. Putting g » = ¢ in (5), we obtain that &, is 2LEA if
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FIG. 4. (Color online) Area of parameters (g, ,q,) where the local-
depolarizing channel ®;7 ® .7 is EA: (a) two-qubit system, d =
d? = 2; (b) qutrit-qubit system, ¥ = 3, d% = 2. The validity of
Proposition 2 is justified inside the dashed region, which provides
all EA channels in case (a) and a subset of EA channels in case (b).
Being applied to case (a), Corollary 2 detects EA behavior inside the
green hatching.

d—2+d\/ 2 . . .
qg < qlli"/fal =~ djl)( > +"2*)‘ [see Fig. 5(a)], which determines a

larger set than the EB condition ¢ < #.
Consider a global depolarizing channel acting on a
pair of d-dimensional subsystems .o/ and 2 simultaneously.

Such anoise is EB if and only if g < However, the noise

disentangles <7 from 2, hence it is EA, if ¢ < ¢Z0™ = (d +
2)/[(d + 1)(d* — d + 2)] [see Fig. 5(b)], which we showed by
an explicit construction of resolution (4) in Appendix F.
Finally, we would like to give a counterintuitive ex-
ample of an entangled state which turns out to be more
robust in the discussed dissipative dynamics than the max-
imally entangled state |W &%) = \/» S i ®i). It can be
readily seen that the state (@f@@f)[wdgg)(lyd@] =
(CD;?Z ® Id%)[l‘ll"z{%) (\IJ"?{*@H becomes separable if <I>;f is EB,
ie, g < gl = T+ Similarly, @f‘@[hllf‘@)(\llf%ﬂ =
(<Df®ld‘@)[|\ll”‘@)(\ll”‘@|] becomes separable if 2 is

. global __
EB, ie., g < gyps

1
\—[2(“ ®

CI)’Q{‘@

d2+1

=9 +1 Consider now a state |y %y =

1) 4+ |d ® d)) which is not maximally entangled (if

FIG. 5. (Color online) Local (a) and global (b) depolarizing
channels that surely annihilate or preserve entanglement of d x d
systems. Entanglement of the state |y) = %(lll) + |dd)) is more
robust than that of the maximally entangled state |\, ) (MES).
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d > 2). Surprisingly, the states (¢>f ® CD;@)[IJ/”Q{%HVM@”
and <I>;f{‘@[|)/"7j‘@)()/"mgl] remain nonpositive under partial

transposition [32,33] and, consequently, are entangled if g >

local 143 global _ 2
kA = Jrps 4 4> dupa” = 7o

results are depicted in Fig. 5. A narrow gap between channels
that are surely EA and channels that are definitely not EA
underlines the importance of the state |y%) in identifying
potentially dangerous noises in applications.

respectively. These

V. SUMMARY

The analogy between the definitions of EB channels and
CP maps based on the consideration of map extensions
stimulates us to introduce the concept of PEA maps as
counterparts of positive maps acting on a composite system
o/ %B. The cone of PEA maps is invariant under concatenation
with partially positive maps. This fact enabled us to find
the necessary and sufficient conditions for PEA maps as
well as to find the explicit form of the dual cone of maps
dDéZi‘?[X] =>, tr[FkX]Slffl;,L%, F, > 0. This form resembles
measure-and-prepare procedures (being EB) but differs in the
use of block-positive operators. Based on these criteria and
in analogy with the entanglement theory, one may introduce
the concept of EA witnesses. Imposing the conditions of
CP and trace preservation on PEA maps we formulated
sufficient criteria for EA channels possessing a clear physical
interpretation illustrated in Fig. 3. The derived criteria were
used in the analysis of local and global depolarizing channels,
for which we identified maximum noise levels; going beyond
those levels leads to entanglement annihilation.
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APPENDIX A: MATRIX REPRESENTATION OF MAPS

A linear map @ : 7 (Hiy) = 7 (How) can also be de-

fined via the d2, x d2 matrix £ with entries (o) k=
-1

(tr[o" Oj]tr[tktk]) 1tr[o ®[]], where {Lk}k‘“0 and {o;} "”‘
are orthogonal operator bases in 7 (Hi,) and 7 (Hout) re-
spectively. As a basis, we use normalized generalized Pauli
(Gell-Mann) matrices {yj}?:)l satisfying the relations yjT =
Vi, wlyjvel = 8k, and yy = éld. Using such a basis, one can
readily see that for din o = d, the matrix representation of
depolarizing channel ®, reads £¢, = diag(l,q, ...,q).

In a matrix representation, a concatenation of maps corre-
sponds to a conventional matrix product: Ey.e = E¢Ev. Also,
Eoor = Eo ® Ev. These properties are especially pleasing for
diagonal matrices (depolarizing maps).
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APPENDIX B: EB DEPOLARIZING CHANNELS

Let us make a change of variable g = [d(2u — 1) —
1]/(d* — 1), then the Choi matrix €, of the depolarizing map
@, is equal to the partially transposed Werner state QE, where
oy = pLd(dLM)PJr + (1 — M)ﬁ P_ is a convex combination
of projectors onto symmetric and antisymmetric subspaces of
Ha ® Hy [42]. The state g, is known to be separable if and
only if it is positive under partial transposition, i.e., % <u<l
[42]. It means that €2, is separable and, consequently, ®, is
EBifg € [ 3. 77

APPENDIX C: POSITIVE BIPARTITE MAPS

Since positive maps on operators 7 (Hy; ® H,) are quite
needed, we define a two-parametric map A, by the following
matrix representation:

Ay = diag(l,s,...,s;8,6,...,t;---;8,t,...,t). (Cl)

~—— ~——— ———

d?—1times  d?—1times d?—1 times

d?—1 times
The map (C1) is surely positive if
0<s<r< ! + {1 ! (C2)
IS X ; 1 s,
d—1 d—1

which is validated by checking the block positivity of its Choi
matrix QF#“*# via the method of Ref. [43] [positivity of
operators (y“""’3 |QE#LE |y I F ) € T(HY?)).

For systems .«7 8, where d # d# one can use a straight-
forward modification of (C1) with an appropriate number of
terms. Such a map will be positive if (C2) is fulfilled for
d = max(d” ,d?).

APPENDIX D: LOCAL DEPOLARIZING EA CHANNELS

For d x d systems, the local depolarizing channel CIDW ®
dJ% is compatible with resolution (4) and, consequently, is EA
whenever q1 and ¢, satisfy inequality (5). The resolution takes
the form

o B o B AR
q)ﬂh ®q)qz=l‘L(<Dp ®Id ) Avlt]
o B AR
+ (1 —w)(Id” @ dF) o A7,
where
_1+d+1( ) 1 o 1
W=3T g P9 “ T SPS

ie., ® p is EB. Inequality (5) transforms into an equality if
p= d+1 The maps Ay, i = 1,2, are given by formula (C1),
where

2d+1)  (d+Dg1—qi2
d+2 d+d+1)q1 —q2)

1 |
hp=— 1- .
1.2 d—l+< d—l)sl’z

For a qutrit-qubit system, one should substitute the corre-
sponding EB maps d>§f<1/4 and q)iiélﬁ for ®,. Numerical
optimization over parameters p, s 2, and ¢, results in the
area of parameters (g;,q>) shown in Fig. 4(b).

S1,2 =
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APPENDIX E: APPLICATION OF COROLLARY 2 TO
LOCAL DEPOLARIZING TWO-QUBIT CHANNELS

In the case of two qubits, we now find parameters g; and

q» such that the Choi matrix ngé’f' can be represented as
1

a convex sum of density operators separable with respect to
partitions <7 | BB’ and B|A /' H#, i.e.,

L 1 kmax . o
Ao = o e @ 0

+(1 = w2 Z| ® a7 7).

This resolution takes place if the operators %Wk) (Y| form a
symmetric informationally complete positive operator-valued
measure (SIC-POVM) (k = 1, ... ,4) or the vectors {|)} are
elements of a full set of mutually unbiased bases (k =1, ...,6)
(see, e.g., [44]),

BA' B

o7 = (alyr Nuit | + blwit” Jy™ )

®|\I"%’@ )(w%@ | + Clﬁd’%

= (alyi” )( *‘@|+b|wk Iwz”))

~ o of B
Ok

PHYSICAL REVIEW A 88, 032316 (2013)

n=~0-qg)0/(q + o —2q19), a= a1+ q + 8q192),
b=3(q1+ 9 —4q142), and c=5(1—q — g+ qq).
However, the operators g; and 9y are positive only if ¢ >
0, a+4+c >0, and b+ ¢ > 0. These restrictions specify the
region of parameters ¢, and g, by the inequality 1 + 3(q; +
q2) — 151> > 0, which is depicted in Fig. 4(a).

APPENDIX F: GLOBAL DEPOLARIZING EA CHANNELS

For d x d systems, the global depolarizing channel <I>f‘@
is compatible with resolution (4) and, consequently, is EA
whenever ¢ < (d + 2)/[(d + 1)(d*> — d + 2)]. The resolution
takes the form

o B of B ARB
o ®1d” +1d” ® %) o AZ?,

where _42;—1 <p< # (i.e., @, is EB) and Ay, is given by
formula (C1) with s =2/(d> —d +2),t = (d + 2)s

For a qutrit-qubit system, the weight factors (2 , 2) should
be replaced by (u,1 — w), a single positive map Ay; should
be split into two (A, and Ay, ), and the maps o, should be
replaced by the corresponding EB maps &< <1/ and o7 <13
Numerical optimization over parameters i, s| 2, and #; » shows
that ;7% is surely EA if ¢ < 0.21, which s slightly less than

the exact value %.
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